Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Euro Surveill ; 11(6): 89-91, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16801694

RESUMO

An outbreak of listeriosis occurred in the Swindon area of the UK in autumn 2003. Five cases were detected in pregnant women. Four of these women were thought to have eaten prepacked sandwiches from a retail outlet in one particular hospital. Sampling at the supplier detected Listeria monocytogenes, which was indistinguishable on molecular testing from the patients isolates. Recent changes in UK food legislation should help diminish the risk of further outbreaks/cases such as ours occurring.


Assuntos
Surtos de Doenças , Manipulação de Alimentos , Lojas no Hospital , Listeriose/epidemiologia , Feminino , Contaminação de Alimentos , Microbiologia de Alimentos , Humanos , Listeria monocytogenes/isolamento & purificação , Listeriose/microbiologia , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Reino Unido/epidemiologia
2.
Proc Natl Acad Sci U S A ; 98(17): 9551-6, 2001 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-11493705

RESUMO

The correct formation of disulfide bonds in the periplasm of Escherichia coli involves Dsb proteins, including two related periplasmic disulfide-bond isomerases, DsbC and DsbG. DsbD is a membrane protein required to maintain the functional oxidation state of DsbC and DsbG. In this work, purified proteins were used to investigate the interaction between DsbD and DsbC. A 131-residue N-terminal fragment of DsbD (DsbDalpha) was expressed and purified and shown to form a functional folded domain. Gel filtration results indicate that DsbDalpha is monomeric. DsbDalpha was shown to interact directly with and to reduce the DsbC dimer, thus increasing the isomerase activity of DsbC. The DsbC-DsbDalpha complex was characterized, and formation of the complex was shown to require the N-terminal dimerization domain of DsbC. These results demonstrate that DsbD interacts directly with full-length DsbC and imply that no other periplasmic components are required to maintain DsbC in the functional reduced state.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas de Bactérias/química , Cisteína/química , Dimerização , Substâncias Macromoleculares , Proteínas de Membrana/química , Modelos Moleculares , Oxirredução , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/química , Estrutura Terciária de Proteína
3.
Structure ; 9(5): 377-87, 2001 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-11377198

RESUMO

BACKGROUND: Hsp33 is a novel redox-regulated molecular chaperone. Hsp33 is present in the reducing environment of the cytosol and is, under normal conditions, inactive. The four highly conserved cysteines found in Hsp33 constitute a novel zinc binding motif. Upon exposure to oxidative stress, Hsp33's chaperone activity is turned on. This activation process is initiated by the formation of two intramolecular disulfide bonds. Recently, the 2.2 A crystal structure of Hsp33 has been solved, revealing that Hsp33 is present as a dimer in the structure (Vijayalakshmi et al., this issue, 367-375 [1]). RESULTS: We show here that oxidized, highly active Hsp33 is a dimer in solution. In contrast, reduced and inactive Hsp33 is monomeric. The incubation of reduced Hsp33 in H(2)O(2) leads to the simultaneous formation of two intramolecular disulfide bonds and the concomitant release of zinc. This concentration-independent step is followed by a concentration-dependent association reaction. The dimerization of Hsp33 requires highly temperature-sensitive structural rearrangements. This allows Hsp33's activation process to be greatly accelerated at heat shock temperatures. CONCLUSIONS: The regulation of Hsp33's chaperone function is highly sophisticated. On a transcriptional level, Hsp33 is under heat shock control. This increases the concentration of Hsp33 under heat and oxidative stress, a process that favors dimerization, a critical step in Hsp33's activation reaction. On a posttranslational level, Hsp33 is redox regulated. Dimerization of disulfide-bonded Hsp33 monomers leads to the formation of two extended, putative substrate binding sites. These sites might explain Hsp33's high and promiscuous affinity for unstructured protein folding intermediates.


Assuntos
Proteínas de Bactérias , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Dimerização , Dissulfetos , Ativação Enzimática , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Mutagênese , Oxirredução , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Temperatura , Zinco/metabolismo
4.
EMBO J ; 20(7): 1555-62, 2001 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11285220

RESUMO

There are two distinct pathways for disulfide formation in prokaryotes. The DsbA-DsbB pathway introduces disulfide bonds de novo, while the DsbC-DsbD pathway functions to isomerize disulfides. One of the key questions in disulfide biology is how the isomerase pathway is kept separate from the oxidase pathway in vivo. Cross-talk between these two systems would be mutually destructive. To force communication between these two systems we have selected dsbC mutants that complement a dsbA null mutation. In these mutants, DsbC is present as a monomer as compared with dimeric wild-type DsbC. Based on these findings we rationally designed DsbC mutants in the dimerization domain. All of these mutants are able to rescue the dsbA null phenotype. Rescue depends on the presence of DsbB, the native re-oxidant of DsbA, both in vivo and in vitro. Our results suggest that dimerization acts to protect DsbC's active sites from DsbB-mediated oxidation. These results explain how oxidative and reductive pathways can co-exist in the periplasm of Escherichia coli.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Modelos Moleculares , Mutagênese , Oxirredução , Oxirredutases/genética , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Estrutura Secundária de Proteína
5.
J Bacteriol ; 183(3): 980-8, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11208797

RESUMO

We have examined the role of the active-site CXXC central dipeptides of DsbA and DsbC in disulfide bond formation and isomerization in the Escherichia coli periplasm. DsbA active-site mutants with a wide range of redox potentials were expressed either from the trc promoter on a multicopy plasmid or from the endogenous dsbA promoter by integration of the respective alleles into the bacterial chromosome. The dsbA alleles gave significant differences in the yield of active murine urokinase, a protein containing 12 disulfides, including some that significantly enhanced urokinase expression over that allowed by wild-type DsbA. No direct correlation between the in vitro redox potential of dsbA variants and the urokinase yield was observed. These results suggest that the active-site CXXC motif of DsbA can play an important role in determining the folding of multidisulfide proteins, in a way that is independent from DsbA's redox potential. However, under aerobic conditions, there was no significant difference among the DsbA mutants with respect to phenotypes depending on the oxidation of proteins with few disulfide bonds. The effect of active-site mutations in the CXXC motif of DsbC on disulfide isomerization in vivo was also examined. A library of DsbC expression plasmids with the active-site dipeptide randomized was screened for mutants that have increased disulfide isomerization activity. A number of DsbC mutants that showed enhanced expression of a variant of human tissue plasminogen activator as well as mouse urokinase were obtained. These DsbC mutants overwhelmingly contained an aromatic residue at the C-terminal position of the dipeptide, whereas the N-terminal residue was more diverse. Collectively, these data indicate that the active sites of the soluble thiol- disulfide oxidoreductases can be modulated to enhance disulfide isomerization and protein folding in the bacterial periplasmic space.


Assuntos
Domínio Catalítico , Escherichia coli/enzimologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Cromossomos Bacterianos/genética , Dipeptídeos , Dosagem de Genes , Isomerismo , Mutagênese , Mutação , Plasmídeos/genética , Isomerases de Dissulfetos de Proteínas/genética , Recombinação Genética
7.
Proc Natl Acad Sci U S A ; 97(20): 10884-9, 2000 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-11005861

RESUMO

The active-site cysteines of DsbA, the periplasmic disulfide-bond-forming enzyme of Escherichia coli, are kept oxidized by the cytoplasmic membrane protein DsbB. DsbB, in turn, is oxidized by two kinds of quinones (ubiquinone for aerobic and menaquinone for anaerobic growth) in the electron-transport chain. We describe the isolation of dsbB missense mutations that change a highly conserved arginine residue at position 48 to histidine or cysteine. In these mutants, DsbB functions reasonably well aerobically but poorly anaerobically. Consistent with this conditional phenotype, purified R48H exhibits very low activity with menaquinone and an apparent Michaelis constant (K(m)) for ubiquinone seven times greater than that of the wild-type DsbB, while keeping an apparent K(m) for DsbA similar to that of wild-type enzyme. From these results, we propose that this highly conserved arginine residue of DsbB plays an important role in the catalysis of disulfide bond formation through its role in the interaction of DsbB with quinones.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Genes Bacterianos , Proteínas de Membrana/genética , Sequência de Aminoácidos , Arginina , Proteínas de Bactérias/metabolismo , Transporte de Elétrons/genética , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Relação Estrutura-Atividade
8.
J Biol Chem ; 275(49): 38302-10, 2000 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-10976105

RESUMO

The chaperone activity of the heat shock protein Hsp33 is regulated by reversible disulfide bond formation. Oxidized Hsp33 is active, and reduced Hsp33 is inactive. We show that zinc binding is essential for the function of this redox switch. Our results reveal that Hps33 contains a new, high affinity (K(a) > 10(17) m(-)(1)), zinc-binding motif in the form Cys-X-Cys-X(27-32)-Cys-X-X-Cys. All four conserved cysteines within this motif act to coordinate a single zinc atom. Experiments where reduced wild type Hsp33 is reconstituted with cobalt or cadmium demonstrate that the metal-coordinating cysteines are present as highly reactive thiolate anions. This ionization may allow for the fast and successful activation of the chaperone function of Hsp33 upon incubation in oxidizing agents.


Assuntos
Proteínas de Bactérias , Cisteína , Zinco/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Sequência Conservada , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Cinética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Espectrofotometria Ultravioleta , Dedos de Zinco
9.
Mol Cell ; 6(2): 349-60, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10983982

RESUMO

Structural, biochemical, and genetic techniques were applied to investigate the function of FtsJ, a recently identified heat shock protein. FtsJ is well conserved, from bacteria to humans. The 1.5 A crystal structure of FtsJ in complex with its cofactor S-adenosylmethionine revealed that FtsJ has a methyltransferase fold. The molecular surface of FtsJ exposes a putative nucleic acid binding groove composed of highly conserved, positively charged residues. Substrate analysis showed that FtsJ methylates 23S rRNA within 50S ribosomal subunits in vitro and in vivo. Null mutations in ftsJ show a dramatically altered ribosome profile, a severe growth disadvantage, and a temperature-sensitive phenotype. Our results reveal an unexpected link between the heat shock response and RNA metabolism.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Metiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Caenorhabditis elegans/genética , Cristalografia por Raios X , Escherichia coli/genética , Humanos , Mathanococcus/genética , Metilação , Metiltransferases/química , Modelos Moleculares , Dados de Sequência Molecular , Fases de Leitura Aberta , Estrutura Secundária de Proteína , RNA Ribossômico 23S/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribossomos/metabolismo , S-Adenosilmetionina/metabolismo , Schizosaccharomyces/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
10.
J Biol Chem ; 275(34): 26082-8, 2000 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-10854438

RESUMO

The chemistry of disulfide exchange in biological systems is well studied. However, very little information is available concerning the actual origin of disulfide bonds. Here we show that DsbB, a protein required for disulfide bond formation in vivo, uses the oxidizing power of quinones to generate disulfides de novo. This is a novel catalytic activity, which to our knowledge has not yet been described. This catalytic activity is apparently the major source of disulfides in vivo. We developed a new assay to characterize further this previously undescribed enzymatic activity, and we show that quinones get reduced during the course of the reaction. DsbB contains a single high affinity quinone-binding site. We reconstitute oxidative folding in vitro in the presence of the following components that are necessary in vivo: DsbA, DsbB, and quinone. We show that the oxidative refolding of ribonuclease A is catalyzed by this system in a quinone-dependent manner. The disulfide isomerase DsbC is required to regain ribonuclease activity suggesting that the DsbA-DsbB system introduces at least some non-native disulfide bonds. We show that the oxidative and isomerase systems are kinetically isolated in vitro. This helps explain how the cell avoids oxidative inactivation of the disulfide isomerization pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Benzoquinonas/metabolismo , Dissulfetos/metabolismo , Proteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Catálise , Cromatografia Líquida de Alta Pressão , Cinética , Oxirredução , Desnaturação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Ribonuclease Pancreático/metabolismo , Ubiquinona/metabolismo
11.
J Biol Chem ; 275(18): 13349-52, 2000 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-10788443

RESUMO

DsbG, a protein disulfide isomerase present in the periplasm of Escherichia coli, is shown to function as a molecular chaperone. Stoichiometric amounts of DsbG are sufficient to prevent the thermal aggregation of two classical chaperone substrate proteins, citrate synthase and luciferase. DsbG was also shown to interact with refolding intermediates of chemically denatured citrate synthase and prevents their aggregation in vitro. Citrate synthase reactivation experiments in the presence of DsbG suggest that DsbG binds with high affinity to early unstructured protein folding intermediates. DsbG is one of the first periplasmic proteins shown to have general chaperone activity. This ability to chaperone protein folding is likely to increase the effectiveness of DsbG as a protein disulfide isomerase.


Assuntos
Proteínas de Escherichia coli , Chaperonas Moleculares/metabolismo , Oxirredutases/metabolismo , Proteínas Periplásmicas , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Ativação Enzimática , Escherichia coli , Chaperonas Moleculares/análise , Oxirredução , Oxirredutases/análise , Isomerases de Dissulfetos de Proteínas/análise , Isomerases de Dissulfetos de Proteínas/metabolismo
13.
EMBO J ; 19(4): 741-8, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10675343

RESUMO

We are analyzing highly conserved heat shock genes of unknown or unclear function with the aim of determining their cellular role. Hsp15 has previously been shown to be an abundant nucleic acid-binding protein whose synthesis is induced massively at the RNA level upon temperature upshift. We have now identified that the in vivo target of Hsp15 action is the free 50S ribosomal subunit. Hsp15 binds with very high affinity (K(D) <5 nM) to this subunit, but only when 50S is free, not when it is part of the 70S ribosome. In addition, the binding of Hsp15 appears to correlate with a specific state of the mature, free 50S subunit, which contains bound nascent chain. This provides the first evidence for a so far unrecognized abortive event in translation. Hsp15 is suggested to be involved in the recycling of free 50S subunits that still carry a nascent chain. This gives Hsp15 a very different functional role from all other heat shock proteins and points to a new aspect of translation.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli , Proteínas de Choque Térmico/metabolismo , Ribossomos/metabolismo , Cloreto de Amônio/farmacologia , Proteínas de Bactérias/genética , Sítios de Ligação , Cloranfenicol/farmacologia , Proteínas de Ligação a DNA/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Proteínas de Choque Térmico/genética , Temperatura Alta , Magnésio/farmacologia , Modelos Biológicos , Polirribossomos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Puromicina/farmacologia , Ribossomos/efeitos dos fármacos
14.
EMBO J ; 19(4): 749-57, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10675344

RESUMO

We have solved the crystal structure of the heat shock protein Hsp15, a newly isolated and very highly inducible heat shock protein that binds the ribosome. Comparison of its structure with those of two RNA-binding proteins, ribosomal protein S4 and threonyl-tRNA synthetase, reveals a novel RNA-binding motif. This newly recognized motif is remarkably common, present in at least eight different protein families that bind RNA. The motif's surface is populated by conserved, charged residues that define a likely RNA-binding site. An intriguing pattern emerges: stress proteins, ribosomal proteins and tRNA synthetases repeatedly share a conserved motif. This may imply a hitherto unrecognized functional similarity between these three protein classes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli , Proteínas de Choque Térmico/química , Proteínas de Ligação a RNA/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Treonina-tRNA Ligase/química , Treonina-tRNA Ligase/genética
18.
J Tissue Viability ; 9(1): 5-8, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10480977

RESUMO

This paper reviews the data in the literature pertaining to risk factors for amputation in the diabetic population, and describes a retrospective study to assess the vascular and other assessments carried out on a sample of 50 diabetic patients undergoing minor (toe and foot) and major (below-knee and above-knee) amputations. The study found that 50% of the patients did not have Doppler studies, 52% did not have angiography, and 78% did not have angioplasty. Major amputations were performed in 76% of the sample. This is an unacceptably high figure. Thorough vascular assessments need to be performed in an attempt to save lower limbs from potential amputation.


Assuntos
Amputação Cirúrgica/estatística & dados numéricos , Pé Diabético/diagnóstico , Pé Diabético/cirurgia , Cuidados Pré-Operatórios/métodos , Cuidados Pré-Operatórios/normas , Qualidade da Assistência à Saúde , Idoso , Amputação Cirúrgica/métodos , Pé Diabético/sangue , Pé Diabético/classificação , Pé Diabético/etiologia , Feminino , Hemoglobinas Glicadas/análise , Humanos , Masculino , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença
19.
Cell ; 98(2): 217-27, 1999 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-10428033

RESUMO

Disulfide bond formation is catalyzed in vivo by DsbA and DsbB. Here we reconstitute this oxidative folding system using purified components. We have found the sources of oxidative power for protein folding and show how disulfide bond formation is linked to cellular metabolism. We find that disulfide bond formation and the electron transport chain are directly coupled. DsbB uses quinones as electron acceptors, allowing various choices for electron transport to support disulfide bond formation. Electrons flow via cytochrome bo oxidase to oxygen under aerobic conditions or via cytochrome bd oxidase under partially anaerobic conditions. Under truly anaerobic conditions, menaquinone shuttles electrons to alternate final electron acceptors such as fumarate. This flexibility reflects the vital nature of the disulfide catalytic system.


Assuntos
Proteínas de Bactérias/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons , Transporte de Elétrons/fisiologia , Proteínas de Escherichia coli , Proteínas de Membrana/química , Isomerases de Dissulfetos de Proteínas/química , Dobramento de Proteína , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Grupo dos Citocromos b , Citocromos/metabolismo , Primers do DNA , Dissulfetos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese/fisiologia , Oxirredução , Oxirredutases/metabolismo , Oxigênio/análise , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Ubiquinona/metabolismo
20.
Cell ; 96(3): 341-52, 1999 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-10025400

RESUMO

Hsp33, a member of a newly discovered heat shock protein family, was found to be a very potent molecular chaperone. Hsp33 is distinguished from all other known molecular chaperones by its mode of functional regulation. Its activity is redox regulated. Hsp33 is a cytoplasmically localized protein with highly reactive cysteines that respond quickly to changes in the redox environment. Oxidizing conditions like H2O2 cause disulfide bonds to form in Hsp33, a process that leads to the activation of its chaperone function. In vitro and in vivo experiments suggest that Hsp33 protects cells from oxidants, leading us to conclude that we have found a protein family that plays an important role in the bacterial defense system toward oxidative stress.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/fisiologia , Citoplasma/metabolismo , Citoplasma/microbiologia , Dissulfetos/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Choque Térmico/fisiologia , Temperatura Alta , Peróxido de Hidrogênio/farmacologia , Chaperonas Moleculares/fisiologia , Dados de Sequência Molecular , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Dobramento de Proteína , Substâncias Redutoras/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...